Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 960
Filtrar
1.
Cell Death Dis ; 15(3): 216, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485947

RESUMO

Despite progressive improvements in the survival rate of pediatric B-cell lineage acute lymphoblastic leukemia (B-ALL), chemoresistance-induced disease progression and recurrence still occur with poor prognosis, thus highlighting the urgent need to eradicate drug resistance in B-ALL. The 6-mercaptopurine (6-MP) is the backbone of ALL combination chemotherapy, and resistance to it is crucially related to relapse. The present study couples chemoresistance in pediatric B-ALL with histidine metabolism deficiency. Evidence was provided that histidine supplementation significantly shifts the 6-MP dose-response in 6-MP-resistant B-ALL. It is revealed that increased tetrahydrofolate consumption via histidine catabolism partially explains the re-sensitization ability of histidine. More importantly, this work provides fresh insights into that desuccinylation mediated by SIRT5 is an indispensable and synergistic requirement for histidine combination therapy against 6-MP resistance, which is undisclosed previously and demonstrates a rational strategy to ameliorate chemoresistance and protect pediatric patients with B-ALL from disease progression or relapse.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sirtuínas , Humanos , Criança , Mercaptopurina/farmacologia , Mercaptopurina/uso terapêutico , Histidina/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Linfoma de Burkitt/tratamento farmacológico , Recidiva , Progressão da Doença
2.
J Biomed Mater Res B Appl Biomater ; 112(3): e35395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433609

RESUMO

6-Mercaptopurine (6MP) is commonly used in the treatment of acute lymphoblastic leukemia as an important agent in maintenance therapy. Despite its therapeutic benefits, 6MP has some limitations during therapy. Taking into account the disadvantages during 6MP therapy, there is a great need to create an appropriate delivery system for this drug. 6MP contains in its structure nitrogen and sulfur atoms capable of forming coordination compounds with metal ions, for example zinc. Therefore, in this work, we prepared biocompatible hydroxyapatite (HAp) doped with zinc ions, and used it as a carrier for 6MP. Doped HAp has not been used as a carrier for this drug before. The work proved that the prepared carrier-drug system has a particle size of about 130 nm, which indicates its potential for intravenous delivery. In addition, in an acidic environment (imitating cancer cells), the carrier agglomerates allow targeted release of the drug. The drug is evenly distributed, which indicates that the doses released from it will always be comparable. The release of the drug in a neutral environment is long-lasting in controlled doses, whereas in an acidic environment it is immediate. The obtained results indicate the high potential of the material in both slow-release and cancer-targeted release of 6MP.


Assuntos
Antineoplásicos , Mercaptopurina , Mercaptopurina/farmacologia , Zinco/farmacologia , Sistemas de Liberação de Medicamentos , Durapatita/farmacologia , Antineoplásicos/farmacologia , Íons , Concentração de Íons de Hidrogênio
3.
Drug Resist Updat ; 72: 101017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988981

RESUMO

The role of ABCC4, an ATP-binding cassette transporter, in the process of platelet formation, megakaryopoiesis, is unknown. Here, we show that ABCC4 is highly expressed in megakaryocytes (MKs). Mining of public genomic data (ATAC-seq and genome wide chromatin interactions, Hi-C) revealed that key megakaryopoiesis transcription factors (TFs) interacted with ABCC4 regulatory elements and likely accounted for high ABCC4 expression in MKs. Importantly these genomic interactions for ABCC4 ranked higher than for genes with known roles in megakaryopoiesis suggesting a role for ABCC4 in megakaryopoiesis. We then demonstrate that ABCC4 is required for optimal platelet formation as in vitro differentiation of fetal liver derived MKs from Abcc4-/- mice exhibited impaired proplatelet formation and polyploidization, features required for optimal megakaryopoiesis. Likewise, a human megakaryoblastic cell line, MEG-01 showed that acute ABCC4 inhibition markedly suppressed key processes in megakaryopoiesis and that these effects were related to reduced cAMP export and enhanced dissociation of a negative regulator of megakaryopoiesis, protein kinase A (PKA) from ABCC4. PKA activity concomitantly increased after ABCC4 inhibition which was coupled with significantly reduced GATA-1 expression, a TF needed for optimal megakaryopoiesis. Further, ABCC4 protected MKs from 6-mercaptopurine (6-MP) as Abcc4-/- mice show a profound reduction in MKs after 6-MP treatment. In total, our studies show that ABCC4 not only protects the MKs but is also required for maximal platelet production from MKs, suggesting modulation of ABCC4 function might be a potential therapeutic strategy to regulate platelet production.


Assuntos
Plaquetas , Megacariócitos , Animais , Humanos , Camundongos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Plaquetas/metabolismo , Diferenciação Celular , Megacariócitos/metabolismo , Mercaptopurina/farmacologia , Mercaptopurina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
4.
Assay Drug Dev Technol ; 21(5): 212-221, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417972

RESUMO

6-Mercaptopurine (6-MCP) is an antiproliferative purine analog used in acute lymphoblastic leukemia, non-Hodgkin lymphoma, and inflammatory bowel disease (Crohn's disease, ulcerative colitis). Although 6-MCP has the great therapeutic potential for cancer and immunosuppressant-related diseases, 6-MCP is not readily soluble in water, presents a high first-pass effect, short half-life (0.5-1.5 h), and implies a low bioavailability (16%). On the contrary, solid lipid nanoparticles (SLNs) are prepared from solid lipids at room temperature and body temperature. In this study, SLNs were prepared w/o/w double emulsion-solvent evaporation method using Precirol ATO5 as matrix lipid. In the emulsion stabilization, surfactant (Tween 80) and polymeric stabilizer (polyvinyl alcohol [PVA]) were used. Two group formulations using Tween 80 and PVA were compared in terms of particle size, polydispersity index, zeta potential encapsulation efficiency%, and process yield%. Differential calorimetric analysis and release properties were examined for optimum formulation, and release kinetics were calculated. According to studies, sustained release was obtained with SLNs by the Korsmayer-Peppas kinetic model. The in vitro cytotoxicity studies were performed on the hepatocarcinoma (HEP3G) cell line. According to the results, successful SLN formulations were produced, and PVA was found best stabilizer. Optimum formulation exhibited significantly higher cytotoxic effects on HEP3G than on pure 6-MCP. These results demonstrated that solid lipid nanodrug delivery systems have great potential for formulation of 6-MCP.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Nanopartículas , Humanos , Mercaptopurina/farmacologia , Polissorbatos , Emulsões , Nanopartículas/uso terapêutico , Nanopartículas/química , Antineoplásicos/farmacologia , Lipídeos/química
5.
Sci Rep ; 13(1): 11749, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474565

RESUMO

In the treatment of childhood acute lymphoblastic leukemia (ALL), current protocols combine initial high-dose multiagent chemotherapy with prolonged oral therapy with 6-mercaptopurine (6MP) and low-dose methotrexate (MTX) maintenance therapy. Decades of research on ALL treatment have resulted in survival rates of approximately 90%. However, dose-response relationships vary widely between patients and insight into the influencing factors, that would allow for improved personalized treatment management, is insufficient. We use a detailed data set with measurements of thioguanine nucleotides and MTX in red blood cells and absolute neutrophil count (ANC) to develop pharmacokinetic models for 6MP and MTX, as well as a pharmacokinetic-pharmacodynamic (PKPD) model capable of predicting individual ANC levels and thus contributing to the development of personalized treatment strategies. Here, we show that integrating metabolite measurements in red blood cells into the full PKPD model improves results when less data is available, but that model predictions are comparable to those of a fixed pharmacokinetic model when data availability is not limited, providing further evidence of the quality of existing models. With this comprehensive model development leading to dynamics similar to simpler models, we validate the suitability of this model structure and provide a foundation for further exploration of maintenance therapy strategies through simulation and optimization.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mercaptopurina/farmacologia , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Contagem de Leucócitos
6.
Immunology ; 170(2): 230-242, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37259771

RESUMO

Antibody inhibitors that block PD-1/PD-L1 interaction have been approved for oncological clinics, yielding impressive treatment effects. Small molecules inhibiting PD-1 signalling are at various stages of development, given that small molecular drugs are expected to outperform protein drugs in several ways. Currently, a significant portion of these small molecular inhibitors achieve this purpose by binding to a limited region of the PD-L1 protein, thereby limiting the choice of chemical structures. Alternative strategies for developing small-molecular PD-1 inhibitors are urgently needed to broaden the choice of chemical structures. Here, we report that 6-mercaptopurine (6-MP) inhibits PD-1 signalling, activates T cell function in vitro and in vivo and shrinks tumours by activating cytotoxic T cells. Mechanistically, 6-MP potently inhibited PD-1 signalling by blocking the recruitment of SHP2 by PD-1. Considering that 6-MP is a chemotherapeutic agent already approved by the FDA for childhood leukaemia, our work revealed a novel anti-tumour mechanism for this drug and suggests that 6-MP warrants further clinical evaluation for other tumour types.


Assuntos
Mercaptopurina , Neoplasias , Humanos , Criança , Mercaptopurina/farmacologia , Mercaptopurina/uso terapêutico , Receptor de Morte Celular Programada 1 , Neoplasias/tratamento farmacológico , Transdução de Sinais , Linfócitos T/metabolismo , Antígeno B7-H1 , Imunoterapia
7.
Mol Pharmacol ; 103(4): 199-210, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669880

RESUMO

6-Mercaptopurine (6-MP) is a key component in maintenance therapy for childhood acute lymphoblastic leukemia (ALL). Recent next-generation sequencing analysis of childhood ALL clarified the emergence of the relapse-specific mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism. In this scenario, minor clones of leukemia cells could acquire the 6-MP-resistant phenotype as a result of the NT5C2 or PRPS1 mutation during chemotherapy (including 6-MP treatment) and confer disease relapse after selective expansion. Thus, to establish new therapeutic modalities overcoming 6-MP resistance in relapsed ALL, human leukemia models with NT5C2 and PRPS1 mutations in the intrinsic genes are urgently required. Here, mimicking the initiation process of the above clinical course, we sought to induce two relapse-specific hotspot mutations (R39Q mutation of the NT5C2 gene and S103N mutation of the PRPS1 gene) into a human lymphoid leukemia cell line by homologous recombination (HR) using the CRISPR/Cas9 system. After 6-MP selection of the cells transfected with Cas9 combined with single-guide RNA and donor DNA templates specific for either of those two mutations, we obtained the sublines with the intended NT5C2-R39Q and PRPS1-S103N mutation as a result of HR. Moreover, diverse in-frame small insertion/deletions were also confirmed in the 6-MP-resistant sublines at the target sites of the NT5C2 and PRPS1 genes as a result of nonhomologous end joining. These sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations in the 6-MP sensitivity and development of therapy overcoming the thiopurine resistance of leukemia cells. SIGNIFICANCE STATEMENT: Mimicking the initiation process of relapse-specific mutations of the NT5C2 and PRPS1 genes in childhood acute lymphoblastic leukemia treated with 6-mercaptopurine (6-MP), this study sought to introduce NT5C2-R39Q and PRPS1-S103N mutations into a human lymphoid leukemia cell line by homologous recombination using the CRISPR/Cas9 system. In the resultant 6-MP-resistant sublines, the intended mutations and diverse in-frame small insertions/deletions were confirmed, indicating that the obtained sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations.


Assuntos
Mercaptopurina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mercaptopurina/farmacologia , Sistemas CRISPR-Cas/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Recidiva , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/uso terapêutico , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo
8.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596605

RESUMO

PACSIN2 variants are associated with gastrointestinal effects of thiopurines and thiopurine methyltransferase activity through an uncharacterized mechanism that is postulated to involve autophagy. This study aims to clarify the role of PACSIN2 in autophagy and in thiopurine cytotoxicity in leukemic and intestinal models. Higher autophagy and lower PACSIN2 levels were observed in inflamed compared with non-inflamed colon biopsies of inflammatory bowel disease pediatric patients at diagnosis. PACSIN2 was identified as an inhibitor of autophagy, putatively through inhibition of autophagosome formation by a protein-protein interaction with LC3-II, mediated by a LIR motif. Moreover, PACSIN2 resulted a modulator of mercaptopurine-induced cytotoxicity in intestinal cells, suggesting that PACSIN2-regulated autophagy levels might influence thiopurine sensitivity. However, PACSIN2 modulates cellular thiopurine methyltransferase activity via mechanisms distinct from its modulation of autophagy.


Assuntos
Doenças Inflamatórias Intestinais , Mercaptopurina , Humanos , Criança , Mercaptopurina/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Intestinos , Autofagia , Proteínas Adaptadoras de Transdução de Sinal/genética
9.
Biochem Biophys Res Commun ; 638: 103-111, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442232

RESUMO

Skin is the biggest organ of the human body, which easily gets irritated by exposure to the sun. Skin photoaging and acute photodamage are caused by intense UV-B radiation. Therefore, it is imperative to find new compounds to prevent skin damage and aging. Mercaptopurine is an immunologic agent commonly used for treating Acute lymphoblastic leukemia and inflammatory bowel disease. The beneficial effects of mercaptopurine on the skin have not been reported, and its intrinsic mechanism of action is unclear. Therefore, this study was to explore mercaptopurine when exposed to UV-B radiation in HacaT cells and C57BL6 mice aging and damage effects. The model of in vivo UV-B-induced skin damage and skin photoaging was established, and the impact of mercaptopurine on cell and animal skin was studied. The study found that mercaptopurine, on the one hand, inhibits cellular and animal senescence. On the other, it inhibits the expression of mitogen-activated protein kinase (MAPK) and the nuclear factor κB (NF-κB), which are important signaling molecules in the early UV-B reaction signaling pathway. In addition, mercaptopurine downregulates matrix metalloproteinase expression, increases collagen fiber content, and facilitates collagen synthesis. Treatment with mercaptopurine also inhibits the expression of inflammatory factors and reduces inflammatory cell infiltration of the skin. In conclusion, our study elucidates mercaptopurine's anti-photoaging and anti-inflammatory activity in cellular and animal models.


Assuntos
Mercaptopurina , Envelhecimento da Pele , Animais , Humanos , Camundongos , Mercaptopurina/farmacologia , Mercaptopurina/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Envelhecimento , Colágeno/metabolismo , Raios Ultravioleta , Fibroblastos
10.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36430909

RESUMO

Azathioprine (AZA) is a pharmacologic immunosuppressive agent administrated in various conditions such as autoimmune disease or to prevent the rejection of organ transplantation. The mechanism of action is based on its biologically active metabolite 6-mercaptopurine (6-MP), which is converted, among others, into thioguanine nucleotides capable of incorporating into replicating DNA, which may act as a strong UV chromophore and trigger DNA oxidation. The interaction between azathioprine and DNA, before and after exposure to solar simulator radiation, was investigated using UV-vis spectrometry and differential pulse voltammetry at a glassy carbon electrode. The results indicated that the interaction of AZA with UV radiation was pH-dependent and occurred with the formation of several metabolites, which induced oxidative damage in DNA, and the formation of DNA-metabolite adducts. Moreover, the viability assays obtained for the L929 cell culture showed that both azathioprine and degraded azathioprine induced a decrease in cell proliferation.


Assuntos
Azatioprina , Mercaptopurina , Azatioprina/farmacologia , Fotólise , Mercaptopurina/farmacologia , DNA , Imunossupressores/farmacologia , Adutos de DNA
11.
Med Oncol ; 39(12): 216, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175721

RESUMO

Patients diagnosed with acute lymphoblastic leukemia (ALL) bearing t(4;11)/MLL-AF4 have aggressive clinical features, poor prognosis and there is an urgent need for new therapies to improve outcomes. Panobinostat (LBH589) has been identified as a potential therapeutic agent for ALL with t(4;11) and studies suggest that the antineoplastic effects are associated with reduced MLL-AF4 fusion protein and reduced expression of HOX genes. Here, we evaluated the in vitro effects of the combination of LBH589 with methotrexate (MTX) or 6-mercaptopurine (6MP) by cell proliferation assays and Calcusyn software in ALL cell line (RS4;11); the in vivo effects of LBH589 in xenotransplanted NOD-scid IL2Rgammanull mice measuring human lymphoblasts by flow cytometry; and the expression of HOX genes by qPCR after treatment in an adult model of ALL with t(4;11). LBH589 combination with MTX or 6MP did not promote synergistic effects in RS4;11 cell line. LBH589 treatment leads to increased overall survival and reduction of blasts in xenotransplanted mice but caused no significant changes in HOXA7, HOXA9, HOXA10, and MEIS1 expression. The LBH589, alone, showed promising antineoplastic effects in vivo and may represent a potential agent for chemotherapy in ALL patients with t(4;11).


Assuntos
Mercaptopurina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Animais , Humanos , Mercaptopurina/farmacologia , Metotrexato/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Panobinostat/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
12.
Cancer Discov ; 12(11): 2646-2665, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35984649

RESUMO

Low-intensity maintenance therapy with 6-mercaptopurine (6-MP) limits the occurrence of acute lymphoblastic leukemia (ALL) relapse and is central to the success of multiagent chemotherapy protocols. Activating mutations in the 5'-nucleotidase cytosolic II (NT5C2) gene drive resistance to 6-MP in over 35% of early relapse ALL cases. Here we identify CRCD2 as a first-in-class small-molecule NT5C2 nucleotidase inhibitor broadly active against leukemias bearing highly prevalent relapse-associated mutant forms of NT5C2 in vitro and in vivo. Importantly, CRCD2 treatment also enhanced the cytotoxic activity of 6-MP in NT5C2 wild-type leukemias, leading to the identification of NT5C2 Ser502 phosphorylation as a novel NT5C2-mediated mechanism of 6-MP resistance in this disease. These results uncover an unanticipated role of nongenetic NT5C2 activation as a driver of 6-MP resistance in ALL and demonstrate the potential of NT5C2 inhibitor therapy for enhancing the efficacy of thiopurine maintenance therapy and overcoming resistance at relapse. SIGNIFICANCE: Relapse-associated NT5C2 mutations directly contribute to relapse in ALL by driving resistance to chemotherapy with 6-MP. Pharmacologic inhibition of NT5C2 with CRCD2, a first-in-class nucleotidase inhibitor, enhances the cytotoxic effects of 6-MP and effectively reverses thiopurine resistance mediated by genetic and nongenetic mechanisms of NT5C2 activation in ALL. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mercaptopurina/farmacologia , Mercaptopurina/uso terapêutico , 5'-Nucleotidase/genética , 5'-Nucleotidase/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Antineoplásicos/uso terapêutico , Recidiva
13.
J Pharmacol Exp Ther ; 382(3): 335-345, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798387

RESUMO

6-Mercaptopurine (6-MP) is used extensively in the treatment of acute lymphoblastic leukemia (ALL) and inflammatory bowel diseases. Our laboratory determined previously, using a recombinant HEK293 cell model, that the SLC43A3-encoded equilibrative nucleobase transporter 1 (ENBT1) transports 6-MP into cells and significantly impacts the cytotoxicity of 6-MP in that model. To further investigate the clinical relevance of this finding, we now extend this work to an analysis of the impact of SLC43A3/ENBT1 expression and function on 6-MP uptake and cytotoxicity in leukemic lymphoblasts, the therapeutic target of 6-MP in ALL. A panel of ALL cell lines was assessed for SLC43A3/ENBT1 expression, ENBT1 function, and sensitivity to 6-MP. There was a significant difference in SLC43A3 expression among the cell lines that positively correlated with the rate of ENBT1-mediated 6-MP uptake. Cells with the lowest expression of SLC43A3 (SUP-B15: Vmax = 22± 5 pmol/µl per second) were also significantly less sensitive to 6-MP-induced cytotoxicity than were the highest expressing cells (ALL-1: Vmax = 69 ± 10 pmol/µl per second). Furthermore, knockdown of ENBT1 using short hairpin RNA interference (shRNAi) in RS4;11 cells caused a significant decrease in ENBT1-mediated 6-MP uptake (Vmax: RS4;11 = 40 ± 4 pmol/µl per second; RS4;11 shRNAi = 26 ± 3 pmol/µl per Second) and 6-MP cytotoxicity (EC50: RS4;11 = 0.58 ± 0.05 µM; RS4;11 shRNAi =1.44 ± 0.59 µM). This study showed that ENBT1 is a major contributor to 6-MP uptake in leukemia cell lines and may prove to be a biomarker for the therapeutic efficacy of 6-MP in patients with ALL. SIGNIFICANCE STATEMENT: This study shows that SLC43A3-encoded equilibrative nucleobase transporter 1 is responsible for the transport of 6-mercaptopurine (6-MP) into leukemia cells and that its level of expression can impact the cytotoxicity of 6-MP. Further studies are warranted to investigate the therapeutic implications in patient populations.


Assuntos
Mercaptopurina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sistemas de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Células HEK293 , Humanos , Mercaptopurina/farmacologia , Mercaptopurina/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
14.
Medicina (Kaunas) ; 58(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35743958

RESUMO

Background and objectives: The multidrug resistance protein 4 (MRP4) is a member of the ABC transporter, which has been extensively related to many types of cancer including leukemia. MRP4 overexpression and activity over the efflux of some chemotherapeutic drugs are the main causes of chemoresistance. 6-mercaptopurine (6-MP) is a chemotherapeutic drug widely used in the consolidation and maintenance phases of leukemia treatment. However, 6-MP is a substrate of MRP4, which decreases its chemotherapeutic efficacy. Current research is focused on the development of MRP4 inhibitors to combat chemoresistance by allowing the accumulation of the drug substrates inside the cells. To date, the only specific MRP4 inhibitor that has been developed is ceefourin-1, which has been reported to inhibit MRP4 in many cancer cells and which makes it an excellent candidate to enhance the activity of 6-MP in a combined treatment in vitro of leukemic cells. Materials and methods: in the present work, we determined the enhancing activity of ceefourin-1 on the antiproliferative and apoptotic effect of 6-MP in leukemic Jurkat cells by trypan blue assay and flow cytometry. Besides, we determined the 6-MP and ceefourin-1 binding sites into MRP4 by molecular docking and molecular dynamics. Results: ceefourin-1 enhanced the apoptotic activity of 6-MP in Jurkat cells, while in CRL-1991 cells both antiproliferative and apoptotic effect were significantly lower. Ceefourin-1 additively cooperates with 6-MP to induce apoptosis in leukemic cells, but normal lymphoblast CRl-1991 showed resistance to both drugs. Conclusion: ceefourin-1 and 6-MP cooperates to trigger apoptosis in leukemic Jurkat cells, but the full mechanism needs to be elucidated in further works. In addition, our perspective is to test the cooperation between ceefourin-1 and 6-MP in samples from patients and healthy donnors.


Assuntos
Leucemia , Mercaptopurina , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Apoptose , Linhagem Celular , Humanos , Células Jurkat , Mercaptopurina/farmacologia , Mercaptopurina/uso terapêutico , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
15.
ACS Biomater Sci Eng ; 8(6): 2477-2488, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35609182

RESUMO

Cancer is one of the most difficult diseases to treat, threatening the lives of millions of people today. So far, various methods have been used to treat cancer, each having its drawbacks. One of these methods is treatment with anticancer drugs, which unfortunately have severe side effects. One of the causes of these complications is the nonspecific effects of anticancer drugs, which attack normal cells in addition to cancer cells and damage healthy tissues. In this study, we are trying to reduce the side effects and increase the efficacy of the drug by providing smart drug delivery. The metal-organic framework (MOF) was rapidly synthesized using a microwave method and at the nanoscale. The particle size of NMOF-5 was 18-20 nm, and its surface area was 2690 m2·g-1. A chitosan polymer coating was formed on the nanocarrier after 6-mercaptopurine was introduced. The biocompatible nanocarrier exhibited a high capacity to adsorb the drug. The biocompatible nanocarrier slowly and uniformly released 96.78% of the drug in a simulated solution at pH 5 and 20.52% at pH 7.4. This showed that CS-6-MP-NMOF-5 released the drug smartly and pH-sensitively. The stability of the biocompatible nanocarrier was studied at different pH values and remained stable at pH 5 for up to 48 h. The toxicity study of the MCF-7 cell line at different concentrations for 24 h showed the excellent performance of the biocompatible nanocarrier compared to the free drug in terms of toxicity to breast cancer cells.


Assuntos
Antineoplásicos , Quitosana , Antineoplásicos/farmacologia , Quitosana/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Mercaptopurina/farmacologia , Micro-Ondas
16.
J Crohns Colitis ; 16(7): 1177-1183, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35024806

RESUMO

Exactly 70 years ago [1951] mercaptopurine was discovered by Gertrude Elion as a novel treatment option for acute leukaemia. A total of three thiopurines (also thioguanine [1950] and azathioprine [1957]) were developed over time. These immunosuppressive drugs were also successfully introduced a few decades later to prevent rejection of transplanted organs and to treat several autoimmune diseases. For her discovery of thiopurines and other antimetabolite drugs, in 1988 Elion was rewarded, together with George Hitchings and James Black, with the Nobel Prize in Physiology or Medicine. Important steps have been made in recent years to unravel its metabolism, mode of action and pharmacogenetics. Today thiopurine [based] therapy remains an essential immunosuppressive approach in treating patients with inflammatory bowel disease.


Assuntos
Doenças Inflamatórias Intestinais , Mercaptopurina , Antimetabólitos , Azatioprina/farmacologia , Azatioprina/uso terapêutico , Feminino , Humanos , Imunossupressores/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mercaptopurina/farmacologia , Mercaptopurina/uso terapêutico , Tioguanina/uso terapêutico
17.
Pharmacol Rep ; 74(1): 257-262, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34091879

RESUMO

BACKGROUND: Thiopurines are effectively prescribed for immune and oncology diseases but their toxicity leads to severe myelosuppression. Therefore, TPMT genetic variants have been used to adjust dosing for poor and intermediate metabolizers, significantly preventing adverse drug reactions. In 2018, the Clinical Pharmacogenetics Implementation Consortium included NUDT15 rs116855232 to also guide thiopurines dosing. This variant is not present in Caucasians but have been identified in 10% of Asian and Latin American populations. Despite research efforts to portrait the world's genetic variation, few studies include the investigation of NUDT15 in large samples. METHODS: Fifteen NUDT15 and TPMT variants were retrieved for 1270 Mestizos and 20 Natives genotyped from previous studies using the GSA-Illumina microarray. After bioinformatic quality controls, genotypes were available for 12 variants, TPMT rs2842949, rs2842950, rs2842934, rs1800460, rs12201199, rs12663332, rs2518463, rs4449636, rs12529220, rs3931660, rs200591577, and NUD15 rs116855232. Allele frequencies and haplotypes were assessed using PLINK, R, and Haploview. Dosing inferences were described according to the Clinical Pharmacogenomics Implementation Consortium. RESULTS: We report relevant populations differences in actionable TPMT*3B and NUDT15 rs116855232 as the allele frequency of the former is higher in Mestizos compared to Caucasians, and for the latter we report twofold and 1.35-fold higher allele frequencies in Natives and Mestizos compared to Mexicans from Los Angeles. CONCLUSIONS: TPMT*3B and NUDT15 rs116855232 actionable markers showed population differences that ought to be considered as dosing inferences highlight the relevance of routine genotyping of these variants for the prescription of thiopurines in Mexican populations.


Assuntos
Mercaptopurina/farmacologia , Metiltransferases/genética , Pirofosfatases/genética , Relação Dose-Resposta a Droga , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Feminino , Frequência do Gene , Humanos , Masculino , México/epidemiologia , Farmacogenética/métodos , Variantes Farmacogenômicos
18.
Cytometry A ; 101(2): 167-176, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34595833

RESUMO

Thiopurine derivatives, such as azathioprine and mercaptopurine, are standard conventional treatment options in inflammatory bowel disease (IBD). Unfortunately, approximately half of patients discontinue thiopurine therapy within 2 years. To improve the prediction of clinical effectiveness, thiopurine therapy is currently optimized using therapeutic drug monitoring. Ras-related C3 botulinum toxin substrate 1 (Rac1) has been suggested as a potential pharmacodynamic marker of the thiopurine effect in lymphocytes. The active thiopurine metabolite 6-thioguanine triphosphate (6-Thio-GTP) causes T cell apoptosis via Rac1 and the downstream transcription factor signal transducer and activator of transcription 3 (STAT3). The aim of this study was to develop and validate a functional pharmacodynamic multiparameter flow cytometric assay to determine Rac1/pSTAT3 expression in the various leukocyte subpopulations in peripheral blood in order to predict therapeutic response in IBD patients in the future. Peripheral blood samples of healthy subjects (no fever or clinical complaints of active disease, C-reactive protein < 10 mg/L) were used for immunocytochemical labeling, applying an optimized fixation and permeabilization strategy. A gating procedure was performed to separate all leukocyte subpopulations. Quantitative data were obtained by measuring presence and median fluorescent intensity. In vitro, Rac1 presence and expression were detectable in all leukocyte subpopulations. After IL-6 stimulation, used as proxy for inflammation, a distinct pSTAT3 signal could be detected in T lymphocytes of healthy subjects. In vivo, an upregulated pSTAT3 signal was detected in nearly all IBD patients with active disease and differed substantially from the signal found in IBD patients in remission on thiopurines and healthy subjects. We developed and validated a functional flow cytometric assay to assess Rac1 and pSTAT3 presence and expression. This opens a venue for a pharmacodynamic assay to predict thiopurine effectiveness in IBD patients.


Assuntos
Doenças Inflamatórias Intestinais , Mercaptopurina , Azatioprina/farmacologia , Azatioprina/uso terapêutico , Biomarcadores , Humanos , Imunossupressores/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Mercaptopurina/farmacologia , Mercaptopurina/uso terapêutico , Linfócitos T/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
J Cell Mol Med ; 25(22): 10521-10533, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636169

RESUMO

In chemotherapy for childhood acute lymphoblastic leukaemia (ALL), maintenance therapy consisting of oral daily mercaptopurine and weekly methotrexate is important. NUDT15 variant genotype is reportedly highly associated with severe myelosuppression during maintenance therapy, particularly in Asian and Hispanic populations. It has also been demonstrated that acquired somatic mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism, are detectable in a portion of relapsed childhood ALL. To directly confirm the significance of the NUDT15 variant genotype and NT5C2 and PRPS1 mutations in thiopurine sensitivity of leukaemia cells in the intrinsic genes, we investigated 84 B-cell precursor-ALL (BCP-ALL) cell lines. Three and 14 cell lines had homozygous and heterozygous variant diplotypes of the NUDT15 gene, respectively, while 4 and 2 cell lines that were exclusively established from the samples at relapse had the NT5C2 and PRPS1 mutations, respectively. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with DNA-incorporated thioguanine levels after exposure to thioguanine at therapeutic concentration. Considering the continuous exposure during the maintenance therapy, we evaluated in vitro mercaptopurine sensitivity after 7-day exposure. Mercaptopurine concentrations lethal to 50% of the leukaemia cells were comparable to therapeutic serum concentration of mercaptopurine. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with mercaptopurine sensitivity in 83 BCP-ALL and 23 T-ALL cell lines. The present study provides direct evidence to support the general principle showing that both inherited genotype and somatically acquired mutation are crucially implicated in the drug sensitivity of leukaemia cells.


Assuntos
5'-Nucleotidase/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mercaptopurina/farmacologia , Mutação , Polimorfismo Genético , Pirofosfatases/genética , Ribose-Fosfato Pirofosfoquinase/genética , Alelos , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Relação Dose-Resposta a Droga , Genótipo , Humanos
20.
Pharmacol Res Perspect ; 9(3): e00764, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33929082

RESUMO

Xanthine oxidase (XO) competes with thiopurine S-methyltransferase (TPMT) and hypoxanthine guanine phosphoribosyltransferase (HPRT) to metabolize azathioprine (AZA)/6-mercaptopurine (6-MP) in vivo. A retrospective investigation was performed to detect the activity of XO in thiopurine curative Chinese inflammatory bowel disease (IBD) patients. We also evaluated whether a relationship between XO activity and incidence of thiopurine-induced adverse effects (AEs) existed. Clinical data and blood samples were collected from 140 IBD patients before receiving AZA/6-MP therapy, and the erythrocyte XO activity was measured. The XO activities of all patients were 20.29 ± 4.43 U/g Hb. No sex difference in XO activity was observed (p = .728), and the XO activity showed no difference between the UC and CD patients (p = .082). AEs were observed in 41 (29.3%) patients including leukopenia (26, 18.57%), gastrointestinal intolerance (11, 7.86%), flu-like symptom (5, 3.57%), alopecia (5, 3.57%), and hepatotoxicity (1, 0.71%). XO activity was significantly lower in the patients with AEs than in those without AEs (18.40 ± 3.73 vs. 21.07 ± 4.48 U/g Hb, p = .001), especially in the patients with leukopenia (18.29 ± 3.68 vs. 21.07 ± 4.48 U/g Hb, p = .004). However, no significant difference in XO activity was found between patients with and without other AEs. Decreased XO activity was observed in the patients who developed flu-like symptoms (17.58 ± 3.50 U/g Hb) and alopecia (18.67 ± 2.91 U/g Hb) compared to those who did not, although the differences did not reach statistical significance. These findings suggested that patients with low XO expression might have a high risk of thiopurine-induced toxicity.


Assuntos
Azatioprina/efeitos adversos , Imunossupressores/efeitos adversos , Doenças Inflamatórias Intestinais/sangue , Mercaptopurina/efeitos adversos , Xantina Oxidase/sangue , Adolescente , Adulto , Idoso , Povo Asiático , Azatioprina/farmacologia , Azatioprina/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Leucopenia/induzido quimicamente , Masculino , Mercaptopurina/farmacologia , Mercaptopurina/uso terapêutico , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...